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A two-color two-photon atomic double ionization experiment using subfemtosecond UV pulses
can be designed such that the sequential two-color process dominates and one electron is ejected by
each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent
interference pattern in the joint energy distribution of the sequentially ejected electrons can be
observed that is due to their indistinguishability and the exchange symmetry of the wave function.
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The availability of subfemtosecond UV and X-ray
pulses from either high harmonic generation [1] or new
free-electron laser facilities is opening the path to prob-
ing electron dynamics in atoms and molecules on its in-
trinsic time scale. One consequence of these develop-
ments has been the observation of quantum interferences
in ionization processes made possible by the correspon-
dence of pulse durations or delays with the time scale of
electronic motion. Double slit interferences in the time-
energy domain in single ionization have been recently ob-
served in the attosecond regime [2]. Interference patterns
in the angular distribution of single ionization of atoms
can be observed with a train of attosecond pulses in an
experiment called an “attosecond stroboscope” [3]. Here
we report ab initio calculations of an intrinsically two-
electron interference phenomenon that differs from those
previously seen in ultrafast experiments in three ways:
(1) It only occurs due to the indistinguishability of the
ejected electrons and reveals their spin coupling; (2) it
appears in the joint distribution of electron energies in
which the two electrons share the total energy of the
two absorbed photons, and (3) It occurs in two-photon
double photoionization under conditions where it is nec-
essarily dominated by sequential ionization by the two
pulses. The interference oscillations are visible even for
very short time delays, although the associated angular
distributions can show important differences from those
expected from a pure sequential mechanism.

In the 1980s, the idea of two-particle interferometry
was proposed theoretically [4] as an example of a general
quantum phenomenon. Later, quantum interference aris-
ing from exchange symmetry was predicted [5] for elec-
trons and observed in coincidence measurements of pho-
toelectrons and Auger electrons [6, 7]. In that case the
photoelectron energy must lie within the Auger width of
the energy of the Auger electron, and the only adjustable
condition in the experiment is the photoelectron energy.
In contrast, the variable time-delay and bandwidths of
two subfemtosecond UV pulses in the present case allow
a significantly richer set of possible experiments.

The prototype situation we consider is one in which
two short UV pulses with different central frequencies
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FIG. 1: (Color online.) Scheme for two-color two-photon dou-
ble ionization process in helium, showing the expected ener-
gies for electrons ejected from each sequential process.

doubly ionize the helium atom as shown in Fig. 1 to
produce electrons with similar energies. The subfem-
tosecond duration of each pulse gives it an appreciable
energy bandwidth. If, for example, a pulse with central
frequency corresponding to a photon energy of 35 eV pre-
cedes one with a central energy of 69 eV, electrons are
ejected with energy distributions centered around 10.4
eV and 14.6 eV. The energy bandwidths of subfemtosec-
ond pulses can cause those distributions to overlap, and
an electron with a given energy can have been ejected by
either pulse. Because the electrons are indistinguishable,
and because their spins must remain coupled in the same
way as in the initial state of the atom (singlet in this
case), the resulting probabilities for ejecting electrons of
energies E1 and E2, restricted to sum to the same total
determined by the double ionization energy of He and the
photon energies, shows interference oscillations that de-
pend on the time delay between the pulses as well as their
durations. Here we predict those photoejection probabili-
ties based on precise ab initio numerical calculations, and
then provide a simple theoretical model that captures the
essential physics and that can be used to semiquantita-
tively describe this process in many-electron atoms.

Our study of this system is based on accurate solu-
tions of the time-dependent Schrödinger equation. The
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underlying methods have been described in detail else-
where [8], and so we describe only the essential ideas
here. We solve the time-dependent Schrödinger equation
from t = 0 to t = T , where the second pulse ends at time
T , and where Ψ(t = 0) is the ground state of the atom,

i
∂

∂t
Ψ(t) = [H0 + Vt]Ψ(t) . (1)

The laser-atom interaction, in the dipole approximation
and length gauge, is Vt = E(t) · (r1 + r2), and H0

is the atomic Hamiltonian. The electromagnetic field,
E(t) = (Eω1(t) + Eω2(t))ǫ, corresponds to two pulses
with different central frequencies and possibly different
durations and intensities, but with the same polarization
vector ǫ in this example. The individual pulses are spec-
ified by

Eω1(t) = E
(1)
0 f (1)(t) sin(ω1t), t ∈ [0, T1]

Eω2(t) = E
(2)
0 f (2)(t− t2) sin(ω2(t− t2)), t ∈ [t2, T ]

(2)
on the time intervals where they are nonzero, where
f (i)(t) is the pulse envelope, chosen here to be
sin2(πt/Ti). The pulse durations are T1 and T2; τ is the
time delay between the centers of the pulses as sketched
in the top panel of Fig. 2, and t2 = τ + (T1 − T2)/2.

After the second pulse the electrons are still interact-
ing and the wave function continues to evolve under H0.
Calculating the ejection amplitudes for a fixed total en-
ergy formally requires propagating for an infinite time
after the second pulse and Fourier transforming the re-
sult. However, it is exactly equivalent to solve the driven
equation (E −H)Ψsc = Ψ(T ), for the function Ψsc at a
particular total energy, E, shared by the two outgoing
electrons. By solving this driven equation using exterior
complex scaling (ECS) of the electronic radial coordi-
nates [8], we automatically impose pure outgoing bound-
ary conditions on the scattered wave function. Then from
Ψsc we can extract the amplitude C(k1,k2) for double
ionization with electronic wave vectors k1 and k2, as we
have done in several previous studies of double ioniza-
tion [8, 9]. The numerical solution of Eq.(1) was per-
formed using products of radial basis functions (discrete
variable representation) and coupled spherical harmon-
ics, as described in ref. [8]. Convergence was achieved
using a maximum total angular momentum of L = 2, in-
dividual angular momenta up to l = 14, and radial grids
extending to 170 bohr.

The probabilities we report here correspond to a sine
squared envelope for the pulses, f (i)(t) in equation (2).
Calculations with Gaussian envelopes show that the cal-
culated probabilities display the same oscillations. We
have also verified that the present results employ pulses
with sufficiently large numbers of oscillations to be es-
sentially independent of the carrier phases.

As an example of the two-electron interference phe-
nomenon, we solve the time-dependent Schrödinger equa-
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FIG. 2: Electron energy sharing distributions at different time
delays for two-color two-photon double ionization. The energy
shared by the photoelectrons is 25 eV. Central frequencies:
ω1 = 35 and ω2 = 69 eV. Pulse durations: T1 = T2 = 500 as.
Intensities: I1 = 1012 W cm−2 and I2 = 2× 1012 W cm−2

tion for different time delays, using two pulses of 500 as:
one with a central energy of 35 eV and intensity 1012

W cm−2, and a second pulse of 69 eV and 2 × 1012 W
cm−2. In Fig. 2 we show the energy-sharing distributions,
k1k2

∫

dΩ1

∫

dΩ2|C(k1,k2)|2, resulting from the double
ionization amplitudes for a total energy equal to the sum
of the central energies of the pulses (104 eV) less the total
binding energy of the helium atom. Positive time delays,
τ correspond to the 35 eV pulse arriving first. For a neg-
ative time delay of τ = −0.5 fs the two-color sequential
process takes place through excitation ionization: the 69
eV pulse ionizes He leaving He+ in the 2p state, and the
35 eV photon ionizes the excited He+ atom. The vertical
lines in the corresponding panel of Fig. 2 indicate the en-
ergies of electrons ejected sequentially by the excitation
ionization pathway at the central frequencies of the two
pulses in that case.

When both pulses reach the target simultaneously
(τ = 0) the maximum ionization probility is centered
at 50% energy sharing. As the time delay increases up
to 1 fs in Fig. 2, an increasing number of oscillations ap-
pear in these electron distributions, their number being
in principle unlimited in the infinite energy resolution of
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FIG. 3: (Color online.) Electron energy joint distribution for
pulses of 500 as with time-delay of 1 fs with other parameters
as in Fig.2. Energies in hartrees. Insert: angular distributions
for E1 = E2 with τ = 0 (solid), 0.5 fs (dashed) and 1 fs
(chained) and one electron (arrow) ejected along polarization
direction.

the ab initio theoretical calculation. The separations of
the peaks as function of the difference in the electron en-
ergies, E2 − E1 is a measure of the time delay between
the short pulses and is approximately equal to 2π~/τ for
pulses of equal duration. If we extract the ionization
amplitudes over a range of total energies from a single
wave packet following the pulses we can see the entire
interference pattern shown in Fig. 3 as it would appear
in coincident energy detection of the electrons integrated
over all angles.

The sensitivity of the oscillations to the duration of
subfemtosecond pulses is shown in the top panel of Fig. 4
where we plot energy-sharing distributions resulting from
different combinations of pulse durations for the same
time delay of 500 as. The energy spacing of the oscil-
lations remains essentially the same while their relative
intensities and contrast ratios change. Not shown in that
figure is the result of using pulse durations longer than 5
fs, when their energy bandwidths do not overlap for these
central energies. In that case the interference pattern is
replaced by two well-separated peaks at the sequential
energies, labeled E1 and E2 in Fig. 1, determined by the
central frequencies of the pulses.

There is good reason to believe these effects can be
practically observed. The integral of the double ioniza-
tion probability over dE1dE2 in the region of the inter-
ference pattern shown in Fig. 3 is 4 × 10−9. With gas
densities typical in contemporary momentum imaging or
coincidence experiments, events with this probability are
commonly observed. If the He++ nuclear recoil is ob-
served in coincidence with one electron, the background
due to single ionization might be avoided.
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FIG. 4: (Color online.) Top: Energy distributions (divided
by T1 × T2) for different pulse durations with delay τ = 0.5
fs. Middle: Comparison of ab initio and model calculations.
Bottom: Moduli of separate interfering factors in sequential
model (atomic units).

To understand the origin of these interferences, and
to produce a semiquantitative model that can be used
for other atoms, we can treat the problem using second-
order time-dependent perturbation theory. If we limit
the sum over intermediate states to the ground state of
the He+ ion, the amplitude for populating the doubly
ionized state Ψ−

k1k2
with electron momenta k1 and k2

from the ground state, Φ0, of He is,

C(k1,k2) ≈
(−i

~

)2 ∫

d3
k0〈Ψ−

k1k2
|µ|ψ−

k0,1s〉〈ψ−

k0,1s|µ|Φ0〉

×
∫ T

0

dt

∫ T

0

dt′eiωk1,k2;ko,1steωk0,1s;0t′E(t)E(t′),

(3)

where the integral is over intermediate ionized momenta,
k0, and transition frequencies are ωk1k2;k0,1s = k2

1/2 +
k2
2/2− k2

0/2−E1s(He+) and ωk0,1s;0 = k2
0/2 +E1s(He+) −

EHe. To evaluate this expression approximately we ap-
peal to the same approximations that we used previously
in a similar model for two-photon ionization from a single
pulse [8]. The key approximations are to the amplitude
〈Ψ−

k1k2
|µ|ψ−

k0,1s〉. We first neglect final state interaction
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completely and write the doubly ionized state as the sym-
metrized product

Ψ−

k1k2
≈

(

ϕ
(−)
k1

(r1)ϕ
(−)
k2

(r2) + ϕ
(−)
k1

(r2)ϕ
(−)
k2

(r1)
)

/
√

2

(4)

where ϕ
(−)
k

denotes a momentum-normalized Coulomb
scattering function for charge Z = 2, and the + sign
corresponds to singlet spin coupling. We then make the
seemingly radical approximation of neglecting screening
and correlation entirely for the intermediate state, writ-

ing it as the product, ψ−

k0,1s ≈ ϕ
(−)
k0

(r1)ϕ
He+

1s (r2), of a
Coulomb function with Z = 2 and the ground state of
He+. Because the dipole operator is a one-body operator,
the integral over k0 in Eq.(3) can then be performed us-
ing the resulting momentum conserving delta functions,
leaving only the time integrations.

With the electric fields in Eq.(2) substituted into
Eq.(3) we get a particularly simple result in the case
that the pulses do not overlap and if we neglect double
ionization by either of the two pulses separately, which
produces electrons at very different final energies,

C(k1,k2) ≈
(−i

~

)2
1√
2

(

〈ϕ(−)
k2

|µ|ϕHe+

1s 〉〈ψ−

k1,1s|µ|Φ0〉

×
[

ei(α(k1)+ω2)∆t J2(α(k1))J1(β(k1))
]

+〈ϕ(−)
k1

|µ|ϕHe+

1s 〉〈ψ−

k2,1s|µ|Φ0〉

×
[

ei(α(k2)+ω2)∆t J2(α(k2))J1(β(k2))
])

,

(5)

where α(ki) = k2
1/2+k2

2/2−k2
i /2−E1s(He+)−ω2, β(ki) =

k2
i /2 + E1s(He+) − EHe − ω1, and ∆t = τ + (T1 − T2)/2.

The only time integrals surviving are then

Ji(γ) ≡ E
(i)
0

∫ Ti

0

eiγtf (i)(t)dt. (6)

The oscillations in the double ionization probability,
|C(k1,k2)|2 as a function of the energies of the elec-
trons arises from the interference of the two terms be-
ing added in Eq.(5). If we neglect the phases of the
dipole amplitudes appearing there, and approximate
them in terms of the square roots of the corresponding
single ionization cross sections, e.g., 〈ψ−

k,1s|ǫ · r|Φ0〉 ≈
(

(dσ/dΩ)/(4π2αkω)
)1/2

for the photoionization ampli-
tude of the He atom (where α here is the fine structure
constant), we find that in this case the dependence of

|C(k1,k2)|2 on the directions of ejected electrons factors
off and is merely the product of two dipole distributions
cos2 θ1 cos2 θ2. The model and ab initio energy-sharing
distributions in Figs. 2-4 are integrated over the angular
dependences.

In Fig. 4 we show results of this simple model im-
mediately below corresponding exact calculations of the

energy-sharing distributions. In spite of the severe ap-
proximations necessary to produce 69 alytical model,
the results match the ab initio calculations well both
in shape and magnitude for this case. If in Eq.(5) we
ignore the energy dependences of the phases of the Ji

integrals, which depend on the shapes of the pulses and
their durations, then the relative phase of the two terms
is (α(k2)−α(k1))∆t = (E2 −E1)∆t, which explains (ap-
proximately) the periods of the oscillations as a function
of either electron’s energy in the joint probability distri-
bution for ionization. The exact spacing also reflects the
phases in Eq.(5) ignored in this simplified picture.

It is important to observe that while the sequential
model correctly describes the features of the energy-
sharing probability distribution, it fails to describe the
actual angular distributions in detail, especially for short
time delays. In Fig. 3 we show calculated ab initio an-
gular distributions for τ = 0, 0.5 and 1 fs. With no time
delay, we see a tendency to back-to-back ejection which
persists in modified form to at least τ = 1 fs, although
apparently changing towards the simple dipole pattern
of the sequential model. This behavior suggests strong
interaction in the final state between sequentially ejected
electrons also seen in some other situations [8, 10].

If the initial state of He were a triplet, the plus sign
in Eq.(5) would be a minus, and minima would appear
where there are maxima in the interference patterns in
Figs. 2-4. For many-electron atoms the overall spin state
of the ion and ejected electrons have to be the same as
that of the neutral. In that case two-electron interference
patterns would provide a direct measure of the residual
ion’s spin state. In such a system (or for pulses with dif-
ferent polarizations) the angular dependence of double
ionization does not necessarily factor out of Eq.(5), and
the interference pattern can vary with the angles of ejec-
tion as well as energy sharing. The arguments leading to
the sequential model for this process in Eq.(5) can eas-
ily be extended to many-electron atoms where this phe-
nomenon could be used to probe the dynamics of double
photoejection when multiple states of the residual ion can
be created.
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